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Abstract-The majority of publications in the field of convective transport enhancement in conduits with 
wavy walls have provided the distribution of the mean Sherwood or Nusselt number per wavelength. The 
mechanisms, however, driving the increase in heat and mass transfer have not been clearly understood so 
far. This paper presents the results of a detailed numerical investigation of local heat and mass transfer 
enhancement in a pipe with sinusoidally varying diameter, covering a wide range of Reynolds numbers 
from laminar to turbulent flow. The discussion is focused on the predicted flow field and the turbulence 
structure, allowing a better understanding of the calculated Sherwood and Nusselt numbers. Part II of this 
paper deals with the experimental validation of the numerically achieved results. Copyright 4: 1996 Elsevier 

Science Ltd. 

1. INTRODUCTION 

A tube with a periodically converging-diverging cross 

section is one of several devices employed for enhanc- 
ing the heat and mass transfer efficiency due to tur- 

bulence promotion. The present investigation appears 
to have a number of important applications such as 
industrial heat exchangers and chemical reactors. Fur- 
thermore, heat transfer in gas turbines, which is often 

enhanced by turbulence promoters and jet impinge- 
ment may also be improved by installing converging- 
diverging sections in the internal cooling passages. In 
addition to any direct practical importance, flow in 

wavy tubes serves as a simple example of separated 
flow. in which the complex interactions of separated 
vortices, free shear layers, driving wall-bounded shear 

flows and the resulting heat and mass transfer can be 
examined in some detail. 

Sparrow and Prata [l] presented numerical solu- 

tions of fully developed mass transfer at low Schmidt 
numbers in a tube with a triangular wavy wall for 

laminar flow. With experiments applying the naph- 
thalene sublimation technique, they verified the 
numerical predictions of the Sherwood number. The 
authors found that this tube is not an attractive 

enhancement device for mass transfer under laminar 
flow conditions compared to the corresponding tube 
with a straight wall. 

Nishimura et al. [2] investigated now characteristics 
such as Row pattern, pressure drop and wall shear 
stress in a channel with a symmetric sinusoidal wavy 
wall. For the wavy channel used in their study laminar 
flow existed at Reynolds numbers less than 

Red,, = 350. An increase of the Reynolds number 

caused turbulent flow to develop, owing to the onset 
of unsteady vortex motion. In the laminar flow range 
the friction factor was inversely proportional to the 

Reynolds number and in the turbulent range it was 
proven to be independent of the Reynolds number. 

In further studies Nishimura et al. [3,4] investigated 
the mass transfer in a wavy channel for transitional 
and turbulent flows and concluded that this channel 

yields a good mass transfer enhancement compared 
to the corresponding straight-walled channel. The 
enhancement is caused by shear layers and traveling 
waves which augment convective transport normal to 

the wall. 
Greiner et al. [5] focused their attention on passive 

enhancement techniques in channel flows by shear 
destabilization. In these systems hydrodynamic insta- 

bility modes, which normally decay in an unenhanced 
flow, are destabilized by careful modification of the 
system solid boundaries, such as cutting grooves in 
the channel wall. They found that the onset location 
of transport enhancement in the axial direction of the 
conduit is a function of the Reynolds number. 

The purpose of this study is to exarnine analytically 
the influence of a sinusoidally varying radius on the 
flow regime, the turbulence structure and the local 
convective transport. 

2. ANALYSlS 

Figure 1 depicts the geometry under consideration. 
The axial variation of the pipe-radius is determinated 
by a sinus function and can be described by two non- 
dimensional parameters : 
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NOMENCLATURE 

a thermal diffusivity 

A, cross-section 

4, 4, 4, constants of turbulence model 

Greek symbols 

; 

heat transfer coefficient 
mass transfer coefficient 

C mean concentration 

‘>P specific heat at constant pressure 

C, constant in Yap correction 
C,, C,, C, constants in turbulence model 

d, mean diameter 

& diffusion coefficient 
F streamfunction 
h amplitude of the wallfunction 
k turbulent kinetic energy 
I typical length of turbulence 
NM Nusselt number (txd,,,/l) 

n coordinate normal to the wall 

P pressure 
Pr Prandtl number (v/a) 

Pr, turbulent Prandtl number (V&J,) 

4 heat flux 
Rk, R, Reynolds numbers of the turbulence 

model 

Red, Reynolds number (U,,,d,,,/v) 

SC Schmidt number (v/D,?) 

SC, turbulent Schmidt number (V&J,,) 
Sh Sherwood number @d,,,/D,J 
T absolute temperature 
u velocity component in axial direction 

Qn mean axial velocity 
V velocity component in radial direction 
x axial coordinate 

L’ radial coordinate. 

y,,. y,, dimensionless geometry parameters 

6 dimensionless distance between 
centerline and wall 

6 dissipation rate of the turbulent kinetic 

energy 

V dynamic viscosity 
r. thermal conductivity 

4 friction coefficient (d,,,/lOA)(A~/fPU~,) 

A wavelength of the wallfunction 
L’ kinematic viscosity 

“1 eddy viscosity 

P density 
cK, 0,. constants of the turbulence model 

5 wavenumber. 

Subscripts 
m average value over cross-section 

W at the wall 

0 initial state, transformed coordinates. 

Superscripts 
* dimensionless value 

Mangler-coordinates 
i i = 0, Cartesian, i = 1, cylindrical 

coordinate system. 

---- 

h ----- 
dr rm 

m 

Fig. 1. Geometry under consideration 

(1) 
The numerical analysis is based on the time aver- 

aged conservation equations of mass, momentum and 
energy in an axisymmetric cylindrical coordinate 
system. It is assumed that the fluid is Newtonian and 

(2) mcompressible with constant properties. To predict 
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the convective mass transfer the concentration equa- 

tion for a binary mixture of two non-reacting gases is 

solved. 
In turbulent flow it is assumed that all fluid proper- 

ties can be described by a time averaged and a stat- 
istically distributed portion. As an effect of these 
assumptions additional terms occur in the equations 
of motion, energy and concentration, which describe 
the turbulent stresses and the turbulent transport of 
energy and concentration. These terms are modeled 
with the help of the k-c: model of Lam and Bremhorst 
[6] by introducing a turbulent viscosity : 

To calculate the distribution of the turbulent kinetic 
energy k and the turbulent dissipation rate F, two 
additional transport equations have to be solved. In 
contrast to the standard k--E model, using wall func- 
tions, the low Reynolds number (LRN) model of Lam 
and Bremhorst scales the constants in the transport 
equations as functions jj,, f;, f2 of the normal distance 
to the wall and two additional turbulent Reynolds 
numbers to account for the turbulence structure in the 
near wall region : 

Jkn 
Re, = __ (4) 

1’ 

(5) 

3 

(7) 

.f2 = ] -e Rri, 

For 11, the following equation holds : 

(8) 

7 
v’, = ,,;,c,, ?I. (9) 

E 

To reduce computer storage and time, the bound- 
ary-layer assumptions were used. If 6 describes the 
local thickness of the boundary-layer, L the typical 

length of the problem and u, t’ the velocity components 
in the X, .Y direction, the boundary-layer assumption 
can be applied under the conditions : 

1 
I’ << I 

vi Re ” 
; = O(E,) f = 0(&J (10) 

and 

(11) 

With these restrictions the following set of equations 
has to be solved : 

with the following boundary conditions : ut the wall 

T = T,, c = i’, (20) 

on the centerline 

(21) 

and with the standard set of constants 

C, = 1.44 C, = 1.92 C,, = 0.09 

0K = 1.0 fr$ = 1.3. (22) 

In addition the continuity equation must be met : 

L”,,,A, = 1 u(y)dJ. (23) 

Due to the lack of the axial diffusion term. the 
above equations are normally not valid in regions with 
flow reversal. However, Anderson er al. [7] rec- 
ommended the use of boundary-layer equations in 
regions with reversed flow as well. as long as the sep- 
aration bubble is closed and not too large. Since the 
recirculation zones in the pipe under consideration are 
expected to be small and closed. the boundary-layer 
equations were applied. 

It is obvious that the transport equations for heat 
(17) and mass (18) are similar. This results from the 
following assumptions : 
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l the components of the binary mixture are non- 
reacting ; 

l there are no internal heat or mass sources ; 
l the boundary conditions are similar, which is the 

case for an isothermal wall ; 
l the saturation pressure of the sublimating com- 

ponent is low. 

Since one purpose of this investigation is to prepare 
the experimental study of the mass transfer in the 
pipe applying the naphthalene sublimation technique 
(presented in part II), it can be stated that the restric- 
tions introduced above can also be fulfilled in the 
experiments. The mass transfer in this system is 
described by equation (18), using a Schmidt number 
of SC = 2.5. 

3. NUMERICAL SOLUTION 

For the numerical solution of equations (12)-(I 8) 
the following dimensionless variables were intro- 
duced : 

IA 
g+ = - 

unl 
u*=C& p*=-$ 

m Ill 

k*+ E*=5$ 
m m 

T- To 

‘* = T,-T,, 

c-co 
c* zz __ (25) 

C,_-c” 

(24) 

x 
x*=- y 

rm 
*=$&. (26) 

Further, use was made of the Mangler transformation 
to supress the singularity at the centerline of the pipe : 

(27) 

dx* = dx (y*)’ dy* = dy. (28) 

In a final transformation step the streamfunction was 
introduced and the coordinate lines were transformed 
to match the pipe geometry, for an easier application 
of the boundary conditions : 

Successively applying the transformations mentioned 
above to equations (12)-(23) leads to the following 
set of equations : 

aF ak* 

aye ax, 

ZF 3’F aF a2F (i+ 1) F ~36 (!‘F -____--___ 
ah ax, ay, ax, ay,: 6 c’x,, n,,; 

aF as* SF a&* (ii- I) a6 a&* 

ay, ax, ax0 ay, 6 Fzav 0 .o 

with 

y*+$k!k]l”‘+” (38) 

Re, = 9 Red, (39) 

Rek =6Rr[l-(l-~)1”‘L’t]~ (40) 

and with the boundary conditions at the wall 

(41) 

g* = 1 L.* = 1 (42) 

and at the centerline 

(43) 
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4. RESULTS 

In the foilowing section the results of the calcu- 
lations, using the equations and methods introduced 
above, will be discussed. In the first part typical flow 
regimes from laminar to transitional and turbulent 
flow and the resulting distribution of the Nusselt and 
Sherwood numbers are discussed. The results were 
calculated for a fixed geometry which is given by 3 
sinus function : 

F= 
$G 

(i+ I)#+ 
(44) 

Chieng and Launder [8] as well as Yap [9] found 

that the LRN k--E models predict heat transfer rates 
in a pipe with a sudden expansion in the vicinity of 
the reattachment point. up to seven times higher than 
measured values. The reason for this problem is the 

attribute of the LRN model to yield an excessive level 
of the near wall length scales. 

In an attempt to cure this problem, Yap added an 

additional source term $ to the right hand side of the 
::-equation (35) : 

S =Max(,.83+;(&-l)(A),,] (45) 

with 

,=k’z 
a 

(46) 

C; = 2.4 and ‘n’ the normal distance to the wall. In 
case of a flow with local equilibrium the source term 
S, vanishes because 

cn=kl-‘, / t: (47) 

In non-equilibrium flow the term acts to reduce the 
departure of the turbulent length scale from its local 
equilibrium value. 

Since separated flows as well as reattachment points 

are expected in the flow through a pipe with sinus- 
oidally varying diameter, the Yap correction was 
applied in this study. In laminar flow the resulting 
equations were solved using the Keller-Box method. 
Whereas in turbulent flow an implicit algorithm was 
applied, which provides more stability. 

To overcome the numerical instabilities in regions 

with reversed flow, the FLARE-approximation [IO] 
was introduced. With the use of this approximation 
the convective term in the axial direction, which is 
normally small, is neglected. The use of up to 140 
nodes in the radial direction and 300 nodes in the axial 

direction for turbulent flow was necessary to achieve 
a grid independent solution. The equations were 
solved on a nonuniform grid, with finer grid spacing 
near the wall and contraction in the axial direction 
near points of vanishing wall shear stress. 

An iterative method was used to solve the coupled 

nonlinear set of equations, applying Newton’s lin- 
earisation method. Iterations were continued until the 
difference between the two last solutions was less than 
10‘ ‘. To start the algorithm fully developed flow con- 
ditions with a homogeneous temperature and con- 
centration distribution for a pipe with constant diam- 
eter were assumed. For further stabilisation of the 
numerical algorithm, especially in turbulent flow, 
underrelaxation factors of 0.7-0.3 were used. 

In the second part the influence of the different 
flow and geometry parameters on the Nusselt and 

Sherwood number will be outlined. 

4.1. Luminarjow 
Figure 2 shows the distribution of the axial velocity 

at different locations downstream in one wave of the 

pipe for Redm = 300 and fully developed flow 
conditions. The profile in the narrowest cross-section 
shows a larger wall velocity gradient compared to the 
parabolic profile of the flow through a straight pipe. 
Moving downstream into the diverging part of the 

pipe, the axial pressure gradient changes its sign from 
negative to positive which causes a flow separation 
and the development of flow reversal in the bulge part 

of the pipe. In the converging part the axial pressure 
gradient changes its sign again. causing the reat- 
tachment of the flow. 

In Fig. 3 the streamlines for one wavelength are 
depicted for Re,, = 300, elucidating how flow separa- 
tion and reattachment in one wave of the pipe lead to 

9.0 9.2 9.4 0.1.,Tl; 
9.8 10.0 

5, 

Fig. 2. Axial velocity profiles for fully developed lammar 
flow. Re,,, = 300. 

1.5 

1.0 

9 

0.5 

0.0 I 
9.0 10.0 

c 
Fig. 3. Streamlines for Re,, = 300. ;I~ = 0.333 and ;‘, = 6.X. 
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Nu 

-1 

Fig. 

9.0 9.2 9.4 9.6 9.8 10.0 
c 

4. Sherwood and Nusselt numbers for Red, = 300, 
yh = 0.333 and yh = 6.28. 

a closed separation bubble in the bulge part. Figure 4 
shows the resulting distribution of the calculated 

Nusselt and Sherwood numbers in the same wave. 
The increasing wall velocity gradient in the narrowest 
cross section causes a very thin concentration and 

thermal boundary-layer, resulting in growing Nusselt 
and Sherwood numbers. Near the reattachment 
points, where high velocity components normal to the 

wall occur, the boundary-layer thickness is addition- 
ally reduced, leading to a maximum of the convective 
heat and mass transfer coefficients downstream of the 
reattachment point. Since in attached flow the con- 
vective boundary-layer thickness is reciprocal to the 

Prandtl and Schmidt numbers, the Sherwood number 
is larger than the Nusselt number. Figures 5 and 6 
show the distribution of the isotherms and the lines 
of constant concentration. It is obvious that the con- 
centration boundary-layer separates together with the 
main flow, leading to a greater thickness locally, com- 
pared to the thermal boundary layer. This is due to 

9.0 10.0 

c 

Fig. 5. Isotherms for Red, = 300. yh = 0.333 and ;‘,, = 6.28. 

1.5 

1.0 

0 

0.5 

0.0 

9.0 10.0 

z 

Fig. 6. Concentration field for Re,, = 300, yh = 0.333 and 
i’,, = 6.28. 

0 

0 2 4 6 8 10 12 
I 

Fig. 7. Sherwood and Nusselt numbers as a function of 
the pipe length (I 1 waves) for Re,, = 300, )I~ = 0.333 and 

:‘,I = 6.28. 

less diffusivity in the concentration field and leads to 
the fact that the Sherwood number is smaller than the 
Nusselt number at this location. 

At the reattachment point a second boundary layer, 
which has an opposite direction to the mainflow, 
develops into a separation bubble. In this secondary 
flow normal conditions hold, with a thinner con- 
centration boundary-layer compared to the thermal 
boundary layer. Thus, the Sherwood number has 
higher values than the Nusselt number. 

Figure 7 shows that the maxima of the Sherwood 
and Nusselt numbers decay exponentially with the 
pipe length, in this case covering 11 sinusoidal waves. 

4.2. Transitional _/low 
The range of Reynolds number for the transitional 

flow regime in the sinusoidal pipe is as yet unknown. 
But the studies of Nishimura et al. [Z-4] carried out 
in a plane channel with sinusoidal walls exhibiting the 
typical features of turbulent flow, such as large vortex 
structures and increasing convective transport, can 
be observed for Reynolds numbers much lower than 
those for a plane channel. They observed the first 
indications of transitional flow at Reynolds numbers 

above Re,, = 600. 
With increasing Reynolds number and hence, 

increasing axial velocity for a fixed geometry and fluid 
properties, the shear layer separating the main flow 
from the recirculation bubble in the bulge part of the 
pipe becomes unstable due to the high shear stresses. 
These shear stresses occur in a layer separating the 
main flow region with large positive axial velocity 
components from the recirculating bubble with low 
negative axial velocity components. The growth of 
small inlet disturbances in these shear layers is similar 
to the so called Kelvin-Helmholtz instability. 
described in ref. [I I] for a plane unbounded shear 
flow. 

Under these conditions the flow is time dependent, 
with large vortex structures separating from the shear 
layer and flowing downstream through the pipe. Since 
the numerical algorithm described in Section 3 is 
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o.oL I 
0.0 1.0 

c 

Fig. 8. Streamlines for Re,, = 2000, )lh = 0.333 and ;I,, = 6.28 
(laminar flow). 

developed for a steady flow conditions, no simulation 
of this flow structure was possible. The implemented 
LRN k--E model allows the calculation of the time 
average flow-, temperature- and concentration-fields. 

To discuss the flow structure under transitional flow 

conditions the following scenario is developed: at a 
Reynolds number of about Red, = 2000, which is near 
the critical Reynolds number for a straight pipe, the 
Row in the entrance region of the sinusoidal pipe is 
still laminar. Therefore, to calculate the flow field as 
well as heat and mass transfer no turbulence model 
was applied. Figure 8 depicts the calculated stream- 
lines and Fig. 9 the predicted Sherwood and Nusselt 
numbers for Re,, = 2000. The flow field is similar 

to that calculated for Red, = 300 but with a larger 
recirculation bubble, and hence, an increased axially 
extended region of low convective heat and mass 
transfer. As explained above, the unstable shear layers 
separating the recirculating flow from the main flow 
held, feed energy to the most unstable modes in the 
flow, causing small disturbances to grow. These grow- 
ing disturbances lead to a periodical breakdown of 
the recirculation bubbles and the resulting vortices 
flow downstream. Following the assumption of the 
well known energy cascade in turbulent flow, these 
vortices split up into an extended number of smaller 

vortices which then lose their energy by dissipation. 
which is typical of turbulent flow. Therefore, it seems 

fair to assume that after a reasonable length down- 
stream from the entrance the flow field can be simu- 
lated applying the presented LRN turbulence model. 

801 I 

I R+,,,=2000 - Sh I 

0.0 0.2 0.4 0.6 0.8 1.0 

E 
9.0 9.2 9.4 9.6 9.8 10.0 

c 
Fig. 9. Sherwood and Nusselt numbers for Red, = 2000. Fig. 12. Sherwood and Nusselt numbers for Rr,, = 2000 in 

)‘h = 0.333 and y,, = 6.28 (laminar flow). the tenth uave. yh = 0.333 and ;I,, = 6.2X (turbulent flow) 

9.0 10.0 

c 

Fig. IO. Streamlines for Red*= 2000, ;‘,, = 0.333 and 

;‘\ = 6.28 (turbulent flow) 

9.0 9.2 9.4 o.,u,:: 9.8 10.0 
c, 

Fig. I I. Axial velocity profiles for Re,,, = 2000. ;I~ = 0.333 
and ;I, = 6.2X (turbulent flow). 

Figures 10 and 11 show the calculated streamlines 
and axial velocity profiles. In Fig. 12 the resulting 
distribution of the Nusselt and Sherwood numbers 
is plotted for one wavelength. Due to the Reynolds 

stresses in turbulent flow, the axial velocity profiles 
show a higher velocity gradient at the wall, which 
results in a reduced size of the recirculation bubble 
and a reduced axial extension of the minimum in the 
Sherwood and Nusselt number’s distribution in the 
bulge part of the pipe. The shear stresses in the shear 
layer lead to an increasing production of turbulent 
kinetic energy and a reduced thickness of the diffusion 
dominated layer near the wall, which is the main trans- 
port resistance. This causes an increase in convective 
transport some distance downstream of the separation 
point. which leads to a maximum in the Sherwood 
and Nusselt numbers. A further rise of the Sherwood 
and Nusselt numbers can be observed near the re- 

attachment point, where the thickness of the thermal 
and concentration boundary layer is reduced again. 

80 

RO ~‘2000 



1068 G. RUSS and H. BEER 

0.0 0.2 0.4 
[, 

O.l$ 0.8 1.0 

Fig. 13. Axial velocity profiles for Red, = 8000, ;I~ = 0.333 
and y,, = 6.28. 

and hence, the temperature and concentration gradi- 
ent at the wall are increased. For a detailed analysis 
of the transient flow regime, the reader is referred to 
Part II. 

4.3. Turbulentjlow~ 
With further increased Reynolds numbers the flow 

entering the sinusoidal pipe is assumed to be turbulent 
at the entrance. Figure 13 shows the axial velocity 
profiles for Red, = 8000 in the first wave. Due to 
the higher velocity gradients and hence, an increased 
kinetic energy of the fluid near the wall, the fluid is 
able to flow further into the diverging part of the wave 
without separation. However, Fig. 14 elucidates that 
the radial and axial extension of the recirculation bub- 
ble is reduced compared to that for laminar flow. It 
can be observed that the flow separates at point ‘A’, 
but the resulting separation bubble is very thin. It 
must be assumed that in reality the flow in this area is 
very unstable with frequent separation of small vorti- 
ces. The real flow would show stationary recirculation 
solely in the area where the calculated streamlines 
show a remarkable size of separation bubble. As dis- 
cussed previously for transitional flow, in turbulent 
flow the shear layers promote the production of tur- 
bulence which causes a reduction in the size of the 
separation bubble, as shown in Fig. 15 for fully 
developed turbulent flow. 

In turbulent flow the convective heat and mass 
transfer are strongly affected by the flow field and 
the turbulence structure. Therefore, it is necessary to 
discuss in addition to the flow field the characteristics 
of the turbulence in order to understand the calculated 
Sherwood and Nusselt numbers depicted in Fig. 16 
for fully developed flow (Re,, = 8000). The sharp 
minimum of the Sherwood and Nusselt numbers in the 

0.0 1.0 

( 

Fig. 14. Streamlines for Red, = 8000, yh = 0.333 and 
Y,, = 6.28 (entrance region). 

0.0 I 1 
7.0 8.0 

c 

Fig. IS. Streamlines for Red", = 8000, y,, = 0.333 and 
;‘, = 6.28 (fully developed). 

9.0 9.2 9.4 9.6 9.8 10.0 

5 

Fig. 16. Sherwood and Nusselt number for Red, = 8000 in 
the tenth wave. ;+, = 0.333 and yh = 6.28. 

diverging part of the wave is caused by the increasing 
thickness of the temperature and concentration 
boundary layer near the separation point. The large 
radial velocity gradients in the developing separation 
bubble very close to the wall cause a peak of Reynolds 
stresses in the near wall region, as depicted in Fig. 1’7. 
The high Reynolds stresses and, hence, the increased 
turbulence diminish the thickness of the viscous 
sublayer, thus increasing the wall gradients of the tem- 
perature and concentration profiles, which leads to a 
peak in the Sherwood and Nusselt numbers shortly 
behind the point of separation. From a more physical 
point of view it can be said that the increased near wall 
turbulence reduces the viscous sublayer and hence, the 
thickness of the diffusion dominated layer near the 
wall which is the main transport resistance is also 
reduced, thus causing a peak in the Sherwood and 
Nusselt numbers’ profile. 

1.5 

1.0 

‘0 

0.5 

0.0 

7.0 7.2 7.4 7.6 7.8 8.0 
.$, lX*/u, 

Fig. 17. Reynold’s stresses for Red, = 8000, Y,, = 0.333 and 
1’A = 6.28. 
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ia 

E 
f 

1 

_ y*=6.28/7,=0.33 
--- yn=7.83/yk=o.33 
-*‘y,=3.14/7,=0.33 

1000 10000 
R% 

1000 10000 
R% 

Fig. 18. Mean Sherwood number per wavelength for various Fig. 20. Mean friction coefficient per wavelength for various 
geometry parameters ;‘,, (fully developed turbulent flow). geometry parameters Y,, (fully developed turbulent flow). 

4.4. Purameter variation 
The purpose of this section is, to investigate the 

influence of different parameters on the solution, 
except for that of the Prandtl and Schmidt numbers 
since this was already included in the foregoing dis- 
cussion on the temperature and concentration fields 
due to the similarity of the transport equations. The 

calculations were performed with Pr = 0.7 and 
St, = 2.5, respectively. 

Therefore. it seems to be reasonable to confine the 
discussion to the mean Sherwood number per wave- 
length for fully developed conditions and varying the 
parameters Y,,, y,, and Re,,. In addition we restrict the 
discussion to turbulent flow regimes because of their 
higher practical importance compared to laminar 
Row. Figure 18 shows the mean Sherwood number 
per wavelength in turbulent flow as a function of the 

Reynolds number for different Y,,. The variation of yh 
is given in Fig. 19. From both figures the conclusion 

can be drawn that the heat and mass transfer is 
enhanced by increasing values of Yh and decreasing y,,. 
The main reason for this behaviour is the growing 
ratio ;‘,,/yh of the pipe wall function, resulting in 
increasing velocity components normal to the wall 
near the reattachment point. This is comparable to 
the impingement of a jet on a wall. 

In addition to the convective transport the numeri- 

loool 
E 

loo / f I __-- 
10 I 

Fig. 19. Mean Sherwood number per wavelength for various 
geometry parameters Y,, ( fully developed turbulent flow). 

1 .o 

.? 

0.1 

“1 y,=6.28/y,,=O.33 
.-. yn=6.28/y,=0.26 

-.* yn=6.28/y,=0.40 

cal analysis reveals that the pressure drop over one 
wavelength is increased considerably by growing 
values of :I,,, as shown in Fig. 20. 

5. SUMMARY 

.4 numerical study was performed to investigate the 

effect of wavy walls on the convective transport in 
pipe flow. The basis of the investigations are the 
momentum and transport equations for heat and mass 
transfer written in boundary-layer form. For laminar 

flow the results show a reduced convective transport 
in the bulge part of the pipe where the streamlines 
visualize a closed separation bubble. A maximum of 
the Nusselt and Sherwood numbers was calculated 
near the reattachment point of the flow in the con- 
verging part of the wave. The mean convective trans- 
port over one wave for fully developed flow is nearly 
the same as that for a straight pipe. 

With increasing Reynolds number the flow becomes 
unstable and for Red, = 2000 the results of the cal- 
culation applying the LRN turbulence model, intro- 

duced by Lam and Bremhorst, show a reduced size of 
the separation bubble compared to laminar flow. This 
is an effect of increased shear stresses in the layer 

separating the recirculation bubble from the main flow) 
which augment the Reynolds stresses. With the 
growth of the turbulence level the convective transport 
is improved, resulting in higher Nusselt and Sherwood 

numbers compared to a straight pipe. The local dis- 
tribution of the convective transport in turbulent flow 
over one wave shows a sharp maximum near the sep- 
aration point in the diverging part and a second 

maximum near the reattachment point. in between is 
a minimum caused by the separating bubble. 

A parameter study shows that the gradient of the 
wall function is proportional to the calculated Nusselt 
and Sherwood numbers in turbulent flow. 
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